An Alteration to Lithium-Sulfur Battery
The USC researchers have come up with a solution for rechargeable batteries. In the January issue of the Journal of the Electrochemical Society, which had been published by Sri Narayan and Derek Moy of the USC Loker Hydrocarbon Research Institute, outlines how they had designed a modification to the lithium-sulfur battery which could be more competitive with the industry standard lithium-ion battery.The lithium sulphur batter which was presumed to be better in energy storage ability than the well=known lithium-ion counterpart had been vulnerable due to its short life span. The lithium=sulphur battery, presently can be recharged 50 to 100 times, unreasonable as an alternative energy source in comparison to 1,000 times, for several rechargeable batteries in the present day market.
The solution planned by Narayan together with lead author and research assistant Moy is what they call the `Mixed Conduction Membrane’, or MCM. This is a small piece of non-porous invented material inserted between two layers of porous separators, soaked in electrolytes which are placed in the midst of two electrodes.
MCM – Essential Movement of Lithium ions
The membrane acts as a block in decreasing the transporting of dissolved polysulfides among anode and cathode. This is a process which tends to increase the type of cycle strain makes use of lithium-sulfur batteries for the purpose of energy storage an experiment.The MCM enables the essential movement of lithium ions, imitating the procedure as it takes place in lithium-ion batteries. This innovative membrane solution tends to preserve the high-discharge rate ability together with energy density without losing the capacity over a period of time. The researchers had discovered that the lithium-sulfur batteries which have a tendency to make use of MCM at several rates of discharge, had led to 100% capacity retention and had around four times longer life in comparison to batteries without the membrane.
According to Narayan, senior author and professor of chemistry at the USC Dornsife College of Letters, Arts and Science had stated that this progress removes one of the major technical barriers to the commercialization of the lithium-sulfur battery, enabling them to realize improved options for energy efficiency.
Lithium-Sulfur Batteries/Lithium-ion Batteries
It is said that lithium-sulfur batteries tends to have a lot of advantage over lithium-ion batteries and are made with plenty and cheap sulphur. They are two to three times denser making them both smaller and better at storing charge.According to researchers, lithium-sulfur battery could be appropriate in saving space in mobile phones as well as computers. Moreover, it would also reduce weight in the forthcoming electric vehicles inclusive of cars, together with planes thereby further reduction in reliance on fossil fuels. The real MCM layer developed by Narayan and Moy is said to be a thin film of lithiated cobalt oxide but future alternate materials may produce much improved effects.
Any alternative material utilised as an MCM, according to Narayan and Moy should satisfy some vitalstandards. The material should be non-porous and should have mixed conduction properties and it should be electrochemically inactive.The research had been financed by USC together with the Loker Hydrocarbon Research Institute.